Übersichtsarbeiten - OUP 03/2018

Augmentationstechniken bei Osteoporose-assoziierten Frakturen

Zusammengefasst stehen zur Sicherung des Repositionsergebnisses nach Frakturversorgung alterstraumatologischer Patienten bereits für diverse Frakturregionen (Wirbelsäule, proximaler Humerus, proximales Femur und proximale Tibia) teils standardisierte Anwendungen von Augmentationstechniken zur Verfügung. Die bisher gängigen acrylischen Knochenzemente zeichnen sich zwar durch gute Bioverträglichkeit und hohe Stabilität aus, zur Vermeidung weiterer Komplikationen wie Zementaustritt oder Anschlussfrakturen muss die Indikation jedoch eng gestellt werden. Alternative Biomaterialien sollten zukünftig zur Versorgung Osteoporose-assoziierter Frakturen weiter in den Fokus gerückt werden.

Interessenkonflikt: keine angegeben.

Korrespondenzadresse

Stefan Mehaffey

Klinik für Allgemeine, Unfall-
und Wiederherstellungschirurgie

Klinikum der Universität LMU

Marchioninistraße 15

81377 München

stefan.mehaffey@med.uni-muenchen.de

Literatur

1. Aro HT, Alm JJ, Moritz N, Mäkinen TJ, Lankinen P: Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women. Acta Orthop. 2012; 83: 107–14

2. Biyani A, Reddy NS, Simison AJ, Klenerman L: The results of surgical management of displaced tibial plateau fractures in the elderly. Injury. 1995; 26: 291–97

3. Blazejak M, Hofmann-Fliri L, Büchler L, Gueorguiev B, Windolf M: In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury. 2013; 44: 1321–26

4. Bleibler F, Benzinger P, Lehnert T et al.: Frakturkosten im deutschen Krankenhaussektor: Welche Rolle spielt die Osteoporose? Gesundheitswesen 2014; 76: 163–8

5. Bopparaju S, Varon J, Surani S: Pulmonary Embolism with Vertebral Augmentation Procedures. Case Rep. Pulmonol. Internet. 2013; Available www.ncbi.nlm.nih.gov/pmc/articles/PMC3872156

6. Bucholz RW, Carlton A, Holmes R: Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin. Orthop. 1989; 240: 53–62

7. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A: Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007; 22: 465–75

8. Cho A-R, Kim H-K, Kwon J-Y, Kim T-K, Choi Y-M, Kim K-H: The incorporation of platelet-rich plasma into calcium phosphate cement enhances bone regeneration in osteoporosis. Pain Physician. 2014; 17: E737–45

9. Coumans J-VCE, Reinhardt MK, Lieberman CH: Kyphoplasty for vertebral compression fractures: 1-year clinical outcomes from a prospective study.
J. Neurosurg. 2003; 99 (1 Suppl): 44–50

10. Dall’Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P: Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury. 2010; 41: 1150–55

11. Deramond H, Depriester C, Galibert P, Le Gars D: Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol. Clin. North Am. 1998; 36: 533–46

12. Dodds RM, Roberts HC, Cooper C, Sayer AA: The epidemiology of sarcopenia. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2015; 18: 461–66

13. Egol KA, Sugi MT, Ong CC, Montero N, Davidovitch R, Zuckerman JD: Fracture site augmentation with calcium phosphate cement reduces screw penetration after open reduction-internal fixation of proximal humeral fractures. J. Shoulder Elbow Surg. 2012; 21: 741–8

14. Elder BD, Lo S-FL, Holmes C et al.: The biomechanics of pedicle screw augmentation with cement. Spine J. 2015; 15: 1432–45

15. Erhart S, Schmoelz W, Blauth M, Lenich A: Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the Proximal Femur Nail AntirotationTM. Injury. 2011; 42: 1322–27

16. Fensky F, Nüchtern JV, Kolb JP et al.: Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures--a biomechanical cadaver study. Injury. 2013; 44: 802–7

17. Folbert EC, Hegeman JH, Vermeer M et al.: Improved 1-year mortality in elderly patients with a hip fracture following integrated orthogeriatric treatment. Osteoporos. Int. 2017; 28: 269–77

18. Fried LP, Tangen CM, Walston J et al.: Frailty in Older Adults. Evidence for a Phenotype. J. Gerontol. Ser. 2001; 56: M146–M157

19. Goffin JM, Pankaj P, Simpson AHRW, Seil R, Gerich TG: Does bone compaction around the helical blade of a proximal femoral nail anti-rotation (PFNA) decrease the risk of cut-out? Bone Jt. Res. 2013; 2: 79–83

20. Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D: Epidemiology, treatment and costs of osteoporosis in Germany - the BoneEVA Study. Osteoporos. Int. 2007; 18: 77–84

21. Hench LL: The future of bioactive ceramics. J. Mater. Sci. Mat. Med. 2015; 26: 86

22. Hernlund E, Svedbom A, Ivergård M et al.: Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch. Osteoporos. 2013; 8: 136

23. Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study. J. Bone Jt. Surg. 1986; 68: 904–11

24. Hong S-J, Park Y-K, Kim JH et al.: The biomechanical evaluation of calcium phosphate cements for use in vertebroplasty. J. Neurosurg. Spine. 2006; 4: 154–9

25. Hoppe A, Güldal NS, Boccaccini AR: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011; 32: 2757–74

SEITE: 1 | 2 | 3 | 4 | 5 | 6