Übersichtsarbeiten - OUP 03/2018
Augmentationstechniken bei Osteoporose-assoziierten Frakturen
26. Jung S, Shim S, Kim H, Lee J, Lim H: Factors that Influence Reduction Loss in Proximal Humerus Fracture Surgery. J. Orthop. Trauma. 2015; 29: 276–82
27. Kammerlander C, Doshi H, Gebhard F et al.: Long-term results of the augmented PFNA: a prospective multicenter trial. Arch. Orthop. Trauma Surg. 2014; 134: 343–49
28. Kammerlander C, Erhart S, Doshi H, Gosch M, Blauth M: Principles of osteoporotic fracture treatment. Best Pract. Res. Clin. Rheumatol. 2013; 27: 757–69
29. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G: A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A. 2014; 102: 254–74
30. Kayanja MM, Togawa D, Lieberman IH: Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine. Spine J. 2005; 5: 55–63
31. Kokubo T: Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998; 46: 2519–27
32. Kolb JP, Kueny RA, Püschel K et al.: Does the cement stiffness affect fatigue fracture strength of vertebrae after cement augmentation in osteoporotic patients? Eur. Spine J. 2013; 22: 1650
33. Lee P-C, Hsieh P-H, Chou Y-C, Wu C-C, Chen W-J: Dynamic hip screws for unstable intertrochanteric fractures in elderly patients – encouraging results with a cement augmentation technique. J. Trauma. 2010; 68: 954–64
34. Lobo-Escolar A, Joven E, Iglesias D, Herrera A: Predictive factors for cutting-out in femoral intramedullary nailing. Injury. 2010; 41: 1312–6
35. Matsuyama Y, Goto M, Yoshihara H: Vertebral reconstruction with biodegradable calcium phosphate cement in the treatment of osteoporotic vertebral compression fracture using instrumentation. J. Spinal Disord. Tech. 2004; 17: 291–6
36. Mayr R, Attal R, Zwierzina M, Blauth M, Schmoelz W: Effect of additional fixation in tibial plateau impression fractures treated with balloon reduction and cement augmentation. Clin. Biomech. Bristol Avon. 2015; 30: 847–51
37. Mcdonald E, Chu T, Tufaga M et al.: Tibial Plateau Fracture Repairs Augmented With Calcium Phosphate Cement Have Higher In Situ Fatigue Strength Than Those With Autograft. J. Orthop. Trauma. 2011; 25: 90–5
38. Morley JE, Anker SD, von Haehling S: Prevalence, incidence, and clinical impact of sarcopenia: facts, numbers, and epidemiology—update 2014. J. Cachexia Sarcopenia Muscle. 2014; 5: 253–9
39. Muhr G, Tscherne H, Thomas R: Comminuted trochanteric femoral fractures in geriatric patients: the results of 231 cases treated with internal fixation and acrylic cement. Clin. Orthop. 1979; 138: 41–4
40. Petros RSB, Ferreira PEV, Petros RSB: Influence of proximal femur fractures in the autonomy and mortality of elderly patients submitted to osteosynthesis with cephalomedullary nail. Rev. Bras. Ortop. 2017; 52(Suppl 1): 57–62
41. Salinas AJ, Vallet-Regí M: Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 2013; 3: 11116–31
42. Schlickewei CW, Laaff G, Andresen A et al.: Bone augmentation using a new injectable bone graft substitute by combining calcium phosphate and bisphosphonate as composite – an animal model. J. Orthop. Surg. Internet. 2015; 10. Available from: www.ncbi.nlm.nih.gov/pmc/articles/PMC4513618/
43. Schmalholz A: Bone cement for redislocated Colles’ fracture. A prospective comparison with closed treatment. Acta Orthop. Scand. 1989; 60: 212–7
44. Scola A, Gebhard F, Dehner C, Röderer G: The PFNA® Augmented in Revision Surgery of Proximal Femur Fractures. Open Orthop. J. 2014; 8: 232–6
45. Scola A, Gebhard F, Röderer G: [Augmentation technique on the proximal humerus]. Unfallchirurg. 2015; 118: 749–54
46. Scordino LE, Obopilwe E, Charette R, Edgar CM, DeBerardino TM, Mazzocca AD: Calcium phosphate cement enhances the torsional strength and stiffness of high tibial osteotomies. Knee Surg. Sports Traumatol. Arthrosc. 2017; 25: 817–22
47. Siu AL, Penrod JD, Boockvar KS, Koval K, Strauss E, Morrison RS: Early Ambulation After Hip Fracture. Arch. Intern. Med. 2006; 166: 766–71
48. Teyssédou S, Saget M, Pries P: Kyphopasty and vertebroplasty. Orthop. Traumatol. Surg. Res. OTSR. 2014; 100 (1 Suppl): S169–179
49. Unger S, Erhart S, Kralinger F, Blauth M, Schmoelz W: The effect of in situ augmentation on implant anchorage in proximal humeral head fractures. Injury. 2012; 43: 1759–63
50. Urban RM, Turner TM, Hall DJ et al.: Effects of altered crystalline structure and increased initial compressive strength of calcium sulfate bone graft substitute pellets on new bone formation. Orthopedics. 2004; 27 (1 Suppl): s113–118
51. Watson JT, Nicolaou DA: Orthobiologics in the Augmentation of Osteoporotic Fractures. Curr. Osteoporos. Rep. 2015; 13: 22–9
52. Yetkinler DN, Goodman SB, Reindel ES, Carter D, Poser RD, Constantz BR: Mechanical evaluation of a carbonated apatite cement in the fixation of unstable intertrochanteric fractures. Acta Orthop. Scand. 2002; 73: 157–64
53. Yu B, Han K, Ma H et al.: Treatment of tibial plateau fractures with high strength injectable calcium sulphate. Int. Orthop. 2009; 33: 1127–33
54. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Towler MR: Bioactive glass reinforced elastomer composites for skeletal regeneration: A review. Mater. Sci. Eng. C. 2015; 53 (Supp. C): 175–88